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La profusion d’images et leur utilisation dans un nombre important d’ap‐
plications, certaines d’entre elles particulièrement stratégiques, a conduit au
développement de processus automatisés de classification. Les réseaux
neuronaux convolutionnels entraînés sont parmi les outils dominants pour ces
tâches à l’heure actuelle. Ils sont cependant exposés à des attaques pouvant
les conduire à des erreurs, aux conséquences potentiellement dramatiques.
Cet article présente certains des risques auxquels sont exposés les réseaux
neuronaux convolutionnels. Il décrit également une série d’attaques récentes
contribuant à l’état de l’art du domaine, des méthodes de défense, et des
pistes de recherche concrètes.

Le nombre de contextes dans lesquels la reconnaissance et la classification
automatique d’images est cruciale n’a cessé d’augmenter depuis plusieurs
années. Elle englobe les applications en matière de conduite autonome,
d’accès à des bâtiments, de surveillance satellitaires, de diagnostics
médicaux, etc. Parmi les outils permettant le traitement rapide et massif de
grandes quantités d’images, les réseaux neuronaux convolutionnels (CNN)
entraînés sont, avec les transformers que nous n’aborderons pas ici, proba‐
blement parmi les plus efficaces et les plus utilisés aujourd’hui.

Les CNN ne sont cependant pas infaillibles. Ils peuvent également
commettre des erreurs aux conséquences potentiellement dramatiques. Ces
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erreurs peuvent être le résultat d’images ambiguës, mais elles peuvent aussi
être le fruit d’attaques conçues sciemment à ces fins.

L’objet du présent article est d’établir un état des lieux succinct d’une partie
de l’état de l’art concernant ces attaques, la manière dont elles sont conçues et
les défis qu’elles rencontrent. Il aborde également des méthodes de défense
que l’on peut mettre en place pour détecter leur existence et limiter leur
impact, et enfin présente certaines directions de recherche actuelles.

L’article est organisé comme suit. La section « Images » fournit quelques
éléments introductifs sur les images (taille, source, nature, usage). La section
« Réseaux neuronaux convolutionnels » décrit succinctement ce qu’est un CNN,
les méthodes d’entraînement, les ensembles utilisés à ces fins, et le forma‐
lisme des données en sortie. On illustre dans la section « Les risques d’erreurs
de classification » les risques d’erreurs de classification et leurs conséquences
potentielles. La section 5 explique comment fonctionnent les attaques sur les
CNN, décrit la typologie et les scénarii des attaques les plus fréquentes, ainsi
que les attentes en matière de qualité visuelle des images hostiles créées par
ces attaques. La section « Où attaquer ? » discute les défis technologiques
auxquels fait face un attaquant selon qu’il attaque des images qui appar‐
tiennent au domaine basse résolution ou au domaine haute résolution, et
donne une liste de méthodes génériques, qui fonctionnent pour tout CNN,
toute taille d’image, toute attaque et tout scénario. Des méthodes de défense
des applications utilisant les CNN sont présentées dans la section « Les
méthodes de défense ». La « Conclusion » annonce certains résultats non encore
publiés et fournit une série de pistes de recherche.

Images
Les images traitées automatiquement ont des tailles variables comme illustré
sur la grille d’images de la figure 1. Celles de la première ligne, extraites de la
base de donnée MNIST [9], sont de taille  pixels ; celles de la deuxième
ligne, extraites de CIFAR-10 [16], sont de taille  ; celles de la troisième
sont de taille (proche de)  et proviennent de ImageNet [8], et celles de
la quatrième ligne sont des images de haute résolution collectées sur Internet
(et sujettes au Creative commons licenses) et, pour la troisième en partant de
la gauche, fournie gracieusement par l’artiste français Speedy Graphito [26].
La plus grande image représentée est de taille .

28 × 28

32 × 32

224 × 224

2448 × 3264
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Fig. 1. Exemples d’images avec des tailles variant de
 à .

Les images diffèrent non seulement en ce qui concerne leur taille, mais
également selon leur nature et leur mode d’utilisation, ainsi qu’illustré
succinctement dans la table 1.

Nature Mode d’utilisation

Privée Réseaux sociaux

Artistique Catalogues raisonnés, enchères

Médicale Diagnostic & traitement

Pseudo-aléatoire Captchas

Routes Véhicules autonomes

Aéroports Securité & antiterrorisme

Satellites Militaire

etc. etc.

Table 1. Images : modes d’utilisation selon leur nature.

28 × 28 2448 × 3264
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Compte tenu de la profusion d’images, de leur utilisation dans de nombreuses
applications, et de la nécessité de les traiter rapidement, il est donc pertinent
de disposer de systèmes automatisés de traitement pour classifier les images
selon leurs contenus.

Réseaux neuronaux convolutionnels
Les réseaux neuronaux convolutionnels (CNN) répondent à ces besoins. En
résumé, un CNN est un système complexe de couches connectées, et dont les
couches ont des objectifs différents. Un exemple schématique de CNN est
illustré dans la figure 2 ; les premières couches de taille  capturent les
données essentielles de l’image, les couches suivantes procèdent à des calculs
sur les données collectées, aboutissant à une dernière couche qui donne un
vecteur de classification de l’image de  valeurs (voir plus loin dans cette
section pour une description conceptuelle du processus générique de
classification).

Fig. 2. Exemple typique de représentation d’un CNN [25].

La Table 2 donne une liste de 10 CNN  entraînés sur ImageNet, représen‐
tatifs des réseaux classiques historiques du domaine. D’un CNN à l’autre, le
nombre de couches diffère (par exemple VGG-19 possède 19  telles couches),
ainsi que le nombre total de paramètres qui les régissent, en l’occurrence de
quatre millions dans le cas de MobileNet et NASNEtMobile à 144  millions
pour VGG-19. Les notions de top-1 et top-5 exactitude sont clarifiées un peu
plus loin.

224 × 224

1000

Ck
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Nom du CNN Paramètres Top-1 Exactitude Top-5 Exactitude

DenseNet121 [14] 8M 0.750 0.923

DenseNet169 [14] 14M 0.762 0.932

DenseNet201 [14] 20M 0.773 0.936

MobileNet [13] 4M 0.704 0.895

NASNetMobile [36] 4M 0.744 0.919

ResNet50 [12] 26M 0.749 0.921

ResNet101 [12] 45M 0.764 0.928

ResNet152 [12] 60M 0.766 0.931

VGG16 [25] 138M 0.713 0.901

VGG19 [25] 144M 0.713 0.900

Table 2. Exemples de 10 CNN entraînés sur ImageNet, leur nombre de
paramètres (en millions), et leur Top-1 et Top-5 exactitude.

Que fait un CNN dans le cadre de la reconnaissance d’images ? Schématique‐
ment, il reçoit en entrée une image, et produit en sortie un vecteur de classifi‐
cation de l’image selon des catégories. Plus précisément (tout en restant sché‐
matique dans cet article), un CNN, successivement, (1) est entraîné, (2) passe
un examen, (3) travaille.

Un CNN entraîné est donc un CNN qui a d’abord été exposé à des milliers
ou des millions d’images. Lors de la phase (1) d’entraînement, le CNN reçoit
essentiellement deux informations : l’image et ce qu’elle représente (formalisé
selon des termes décrits plus bas). Ensuite, lors de la phase (2) d’examen, le
CNN est exposé à des images de test, et doit « dire » ce qu’elles représentent.
S’il réussit, il est alors considéré comme apte à être exposé à des images ne
faisant pas partie de celles qu’il a déjà reçues en entrée lors de l’entraînement
ou de l’examen : il sera en mesure de fournir une classification de ce que cette
nouvelle image représente, sur la base de l’expérience acquise au cours de
l’entraînement.

La table 3 donne des exemples d’ensembles d’entraînement. Pour chacun,
elle précise la taille de ces images, et le nombre d’images utilisées pour la
phase (1) et la phase (2). Elle donne aussi le nombre de catégories dans
lesquelles le CNN est amené à classifier les images. Par exemple, les CNN
entraînés sur MNIST classent des images représentant des chiffres (voir
première ligne de la figure 1), donc dans les 10 catégories .
Les CNN entraînés sur CIFAR-10 classent les images également dans 10 caté‐
gories, mais qui sont différentes des précédentes, puisqu’il s’agit (voir

Ck
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C2

C3

C4

C5

C6

C7

C8
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C10

0, 1, 2, 3, 4, 5, 6, 7, 8, 9
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deuxième ligne de la figure 1) d’animaux (oiseau, chat, cerf, chien, grenouille,
cheval) ou d’objets (avion, voiture, bateau, camion). Les CNN entraînés sur
ImageNet classifient les images dans 1000 catégories (des exemples provenant
d’ImageNet sont donnés en troisième ligne de la figure 1). Les notions de « top-
1 exactitude » et « top-5 exactitude » spécifiés dans la table 2 traduisent le taux
de réussite à l’examen d’un CNN entraîné. Par exemple, VGG-19 entraîné sur
ImageNet a une top-1 exactitude de 0.713 et une top-5 exactitude de 0.900.
Cela signifie que VGG-19 a correctement identifié la bonne catégorie des
100 000 images de test dans 71.3 % des cas, et que cette bonne catégorie se
trouvait parmi les cinq catégories dominantes identifiées par le CNN dans
90.0 % des cas.

Ensemble
d’entraînement

# images
d’entraînement

# images de
test

Taille des
images

# Catégories

MNIST 60 000 10 000 10

CIFAR-10 50 000 10 000 10

ImageNet 1.2 million 100 000 1000

Table 3. Exemples d’ensembles d’entraînement pour CNN.

Mathématiquement, le processus de classification d’une image  par un CNN
 peut être visualisé comme suit :

En ce cas, la longueur  du vecteur de classification  désigne le nombre de
catégories  dans lesquelles  classe les images auxquelles il est exposé
(  pour les CNN entraînés sur MNIST ou CIFAR-10, et  pour ceux
entraînés sur ImageNet). Chaque valeur  dépend de  et de , et mesure la
plausibilité déclarée par  que  appartienne à la catégorie . Le CNN  clas‐
sifie l’image  dans la catégorie  correspondant à la valeur  dominante
parmi toutes les valeurs .

La figure 3 montre un exemple typique de classification fournie par un CNN
entraîné sur CIFAR-10, lorsqu’il est exposé à l’image représentée. Essentiel‐
lement (et de nouveau, de manière schématique), la valeur donnée par le CNN
pour la catégorie « chat » est ici , celle pour la catégorie « chien » est

, et la somme des huit autres valeurs est .

28 × 28

32 × 32

224 × 224

I

C

I ⟶ C⟶ oC(I) = [v1, ⋯ , vℓ], où 0 ≤ vj ≤ 1 et
ℓ

∑

j=1

vj = 1. (1)

ℓ oC(I)

c1, ⋯ , cℓ C

ℓ = 10 ℓ = 1000

vj C I

C I cj C

I ck vk

vj

vchat = 0.97

vchien = 0.01 0.02
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Fig. 3. Exemple représentatif de classification
d’une image par un CNN entraîné.

Les risques d’erreurs de classification
Les risques liés à la classification d’images peuvent se résumer en deux
phrases, en quelque sorte duales l’une de l’autre : « ne pas voir ce qui est » et
« voir ce qui n’est pas ». Ainsi, la figure 4 nécessite une grande attention de la
part de l’œil humain pour déceler l’existence d’un chien couché sur le sofa.

Fig. 4. Illustration de la difficulté pour l’œil humain à déceler ce qui est.

À l’instar des êtres humains, les CNN peuvent aussi commettre des erreurs de
classification d’images. Des images peuvent tromper et les uns, et les autres,
mais en général elles le font différemment. Les erreurs peuvent certes être
dues à des images très particulières. Elles peuvent aussi résulter d’attaques,
potentiellement avec des conséquences dramatiques, comme illustré sur deux
cas dans la figure 5 [10,23].
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Fig. 5. Attaques et conséquences.

Pour les deux images de gauche de la figure 5, l’ajout de lunettes sur le visage
de l’homme a conduit le CNN à classifier l’image résultante comme étant la
célèbre actrice représentée au dessous de lui. Pour les deux images de droite,
l’ajout de petites bandes noires et de petites bandes blanches sur le signe
« STOP » a conduit le CNN à interpréter l’image résultante comme étant le
signal d’une limitation de vitesse à 45 miles par heure. Les conséquences de
telles méthodes peuvent être catastrophiques.

Comment fonctionnent les attaques ?
Les attaques procèdent par l’ajout de bruit hostile à des images selon un
schéma illustré par la figure 6 : un CNN classifie correctement dans la caté‐
gorie « chat » une image « propre » de chat ; on y ajoute du bruit hostile ; le CNN
classifie l’image « hostile » résultante comme étant dans la catégorie « chien »,
alors même qu’un humain classifierait l’image hostile dans la catégorie « chat »
(dans le cas présent, les deux images sont même indistinguables pour l’œil
humain, nous revenons plus loin sur cette notion).

Fig. 6. Ajout de bruit hostile à une image pour tromper un CNN.



Numéro 25, juin 2025 Réseaux neuronaux convolutionnels  — 129

Le bruit hostile dépend de :
–  l’image propre ;
–  le CNN ;
–  le scenario de l’attaque ;
–  le niveau de connaissance qu’a l’attaquant sur le CNN ;
–  la qualité visuelle attendue pour l’image hostile.
Il est important de noter que l’ajout de bruit aléatoire ne fonctionne pas, en
particulier si l’on souhaite tromper aussi bien les humains — « ceci est un
chat » — et les CNN — « l’image appartient à la catégorie chien ».

Une attaque dépend fortement du niveau de connaissance qu’a l’attaquant
du CNN à le tromper. Dans une attaque de type « boîte blanche », l’attaquant
connaît parfaitement le CNN visé (son architecture, le nombre de couches, ses
paramètres, etc.). Une attaque de type « boîte noire » est beaucoup plus difficile
(et correspond aux cas rencontrés en pratique), puisque l’attaquant ne sait
rien du CNN qu’il cherche à attaquer.

Par ailleurs, à partir d’une image propre classée dans une catégorie , une
attaque peut suivre plusieurs scenarii. Les plus fréquents sont, d’une part, le
« untargeted scenario », où l’objectif est de créer une image hostile classifiée par
le CNN dans n’importe quelle catégorie sauf celle de l’image propre, et, d’autre
part, le « targeted scenario », où une catégorie est fixée à l’avance, l’objectif
étant de créer une image hostile classée par le CNN dans cette catégorie
précise et pas une autre. Dans le cas du targeted scenario, on peut aussi poser
des conditions sur le degré d’exigence souhaité pour la classification du CNN
de l’image hostile dans la catégorie visée  (par exemple en demandant qu’elle
excède une valeur fixée à l’avance, ou que la distance avec la seconde catégorie
la mieux placée excède également une valeur fixée à l’avance, etc.).

Fig. 7. Exemples d’images hostiles.

ca

ct



130 — F. Leprévost, A. O. Topal, E. Mancellari 1024, le bulletin de la SIF

Enfin, la qualité visuelle des images hostiles peut être « distinguable », auquel
cas l’œil humain verra que des modifications ont été apportées, ou non. La
figure 7 illustre cela. Les images de la première rangée sont les images propres,
classées par le CNN dans les bonnes catégories. Les images de la seconde rangée
sont les images hostiles. L’œil humain remarque que des modifications ont été
apportées aux quatre premières (voir [27,15,22,32]). Il en est incapable pour la
dernière ([18,30], voir également la section « Où attaquer ? »).

En pratique, les cas réels d’attaques nécessitent la combinaison la plus diffi‐
cile  : boîte noire, scénario targeted, des images hostiles indistiguables. De
telles attaques existent, notamment [11,5,4,2,1,33], ainsi que notre attaque à
base d’un algorithme évolutionnaire [28] (nous évoquons une autre de nos
attaques dans la conclusion).

Où attaquer ?
La taille de plus en plus importante des images utilisées en pratique pose des
défis dont l’ampleur va grandissant. En effet, d’une part, la taille d’entrée des
CNN est souvent petite (  ou ), les images sont au besoin
retaillées, et les attaques portent traditionnellement sur des images de la
taille d’entrée des CNN  ; autrement dit  : les attaques sont dans le domaine
basse résolution (LR), comme illustré dans la figure 8.

Fig. 8. Attaque dans le domaine LR.

Or, d’autre part, les images propres en entrée peuvent être grandes, et appar‐
tenir au domaine haute résolution (HR). C’est notamment le cas de la plupart des
images mises en ligne sur les réseaux sociaux. Il peut néanmoins s’avérer souhai‐
table de protéger la sphère privée des individus, en limitant leur traçage par des
CNN à partir des images mises (parfois inconsidérément) sur les réseaux
sociaux. Se pose alors la question de la possibilité d’attaquer directement dans le
domaine HR. Un tel schéma d’attaque est illustré dans la figure 9, où l’intention
est d’introduire du bruit hostile directement dans la grande image propre.

32 × 32 224 × 224
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Fig. 9. Attaque dans le domaine HR.

La construction d’images HR hostiles conduit à trois défis : vitesse de création
de telles images hostiles, adversité des images une fois retaillées pour
s’adapter à la taille d’entrée des CNN, qualité visuelle des images hostiles
dans le domaine HR.

Il se pose alors notamment la question de l’existence de méthodes géné‐
riques qui résolvent ces trois défis tout en fonctionnant pour tout CNN spéci‐
fique, toute taille d’image, toute attaque et tout scenario. À notre connais‐
sance, notre équipe est la première à avoir apporté une réponse positive à
cette question sous la forme de trois méthodes. En résumé, la première [17]
consiste à « relever » dans le domaine HR une image hostile construite dans le
domaine LR, c’est-à-dire essentiellement à étendre au domaine HR une image
hostile provenant du domaine LR ; la deuxième [18,30] consiste à ne relever
que le bruit hostile, et à l’additionner à l’image propre dans le domaine HR ; la
troisième [19] identifie les zones spécifiques de l’image sur lesquelles faire
porter l’attaque dans le domaine HR. Il est à noter que la méthode 2 raffine et
simplifie méthode  1, et que la méthode  3 peut être combinée avec la
méthode 2.

À titre d’exemple, la figure 10 extraite de [30], illustre la deuxième méthode.
Une image propre de haute résolution (domaine HR), de taille  en
l’occurrence, est réduite à la taille  de basse résolution (domaine LR).
Une attaque (peu importe laquelle) sur cette image de basse résolution crée
une image hostile également dans le domaine LR. la différence entre l’image
hostile et l’image propre réduite dans le domaine LR fournit le bruit hostile
dans le domaine LR. Ce bruit hostile (et rien que lui) est « relevé » du domaine
LR au domaine HR par une fonction d’interpolation convenable. Ce bruit
hostile est ajouté à l’image propre dans le domaine HR, ce qui fournit une
image dans le domaine HR qui est potentiellement hostile. Cette image est
réduite au format LR et donnée en entrée au CNN. Si le CNN classifie cette
image réduite dans une classe différente de celle de l’image propre, alors
l’image HR dont elle provient est une image hostile dans le domaine HR.

960 × 1280

224 × 224
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Fig. 10. La stratégie « noise blowing up ».

De telles méthodes mènent à des images hostiles d’une très grande qualité
visuelle, comme l’illustre la figure  11, obtenue à partir de notre
attaque [18,30] de type boîte noire pour le scénario targeted sur une image de
grande taille (sur les catégories « guépard » pour l’image propre et « minibus »
pour la catégorie cible dans laquelle l’attaque doit conduire le CNN à ranger
l’image hostile).

Fig. 11. Stratégie « Noise Blowing-Up » avec notre attaque à base
d’algorithme évolutionnaire sur VGG-16 entraîné sur ImageNet.
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Les méthodes de défense
Des méthodes destinées à protéger les CNN – ou, plus exactement, les
applications utilisant des CNN – de ce type d’attaque ont été développées (avec
des succès variables). On attend en général d’un système de défense qu’il détecte
les images hostiles, potentiellement qu’il procède à leur exclusion avant tout
autre traitement, et qu’il alerte l’utilisateur du fait qu’une attaque est en cours.

Ces détecteurs peuvent être supervisés ou non. Un détecteur supervisé a
connaissance à l’avance des attaques qu’il subira, et renforcera la défense des
CNN en ajoutant des images hostiles dans leur ensemble d’entraînement, en
spécifiant évidemment que ces images sont hostiles et doivent être reconnues
comme telles. Un détecteur non supervisé est plus réaliste, puisqu’on ne
suppose alors pas connues les attaques à l’avance. Les performances de ces
détecteurs sont mesurées par une série d’indicateurs (taux de détection, taux
de faux positifs, complexité, overhead, précision, recall, F1, inference time, etc).

LID [21] est un exemple de détecteur supervisé. NIC [24], ANR [20], FS [35]
et ShuffleDetect [7] sont des exemples de détecteurs non supervisés. À titre
d’illustration, ShuffleDetect s’inspire du test probabiliste de primalité de
Fermat. Concrètement, une image  (carrée dans notre exemple, de taille

) est totalement partitionnée en  morceaux (  dans notre
exemple).

Fig. 12. ShuffleDetect : action de , classification de  et de .σ I shσ(I)

I

224 × 224 N N = 16
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Or il y a une action sur ces morceaux du groupe symétrique1 2 . L’on
prend  permutations aléatoires  (ce qui est largement
possible parmi les  permutations du groupe  considéré). Pour chaque telle
permutation , on construit l’image mélangée  en permutant les
morceaux de  selon l’action de . On obtient les vecteurs de classifications du
CNN pour  et pour . La figure 12 illustre ce processus.

On compare les catégories dominantes et l’on décrète l’image  comme
propre si, pour au moins la majorité des permutations , les images mélangées

 sont classées par le CNN dans la même catégorie que , et comme
adversaire sinon. Cette approche, validée expérimentalement dans [7], fait de
ShuffleDetect une première rapide ligne de défense susceptible de déceler des
images hostiles ou nécessitant des traitements complémentaires (le plus
souvent plus coûteux en temps).

Conclusion
Cet article a illustré par un survol de certaines techniques existantes les défis
des attaques sur les mécanismes automatiques de reconnaissance d’image par
des CNN. Dans la course entre attaques et défenses, l’avantage semble rester
à l’attaquant, d’autant plus que, malgré l’existence d’algorithmes de défense, il
semble de plus en plus difficile de détecter l’existence même d’une attaque. La
qualité visuelle des images hostiles est devenue impressionnante, même pour
des images haute résolution, des attaques de type boîte noire et des scénarios
targeted.

Jusqu’à récemment, toutefois, les attaques dans ces contextes très exigeants
semblaient particulièrement chronophages en comparaison des attaques de
type boîte blanche. En effet, là où les attaques de type boîte blanche (c’est-à-
dire celles où l’attaquant connaît parfaitement le CNN à attaquer) deman‐
daient de l’ordre d’une minute dans un environnement expérimental donné,
les attaques de type boîte noire (celles où, schématiquement, l’attaquant n’a
aucune idée du CNN à attaquer) pouvaient nécessiter au moins quinze fois
plus de temps (parfois bien davantage) dans le même environnement expéri‐
mental (voir par exemple [30]). Cette situation a récemment changé. Nous
montrons dans [29] comment construire, en des temps comparables (voire infé‐
rieurs) aux attaques de type boîte blanche, des images hostiles par une
attaque de type boîte noire, et cela, contre les dix CNN répertoriés dans la
table  2  [5], et pour des images HR. Notre attaque NBUGan utilise la tech‐
nique de relèvement du bruit hostile de [30] (consistant à identifier le bruit
ajouté pour créer une image hostile du domaine LR, et à « relever » ce bruit du
domaine LR vers le domaine HR et à l’ajouter à l’image propre de départ pour

, SN

100 σ1, ⋯ , σ100 ∈ SN

N ! SN

σ shσ(I)

I σ

I shσ(I)

I

σ

shσ(I) I

1.  Le groupe symétrique  est le groupe de toutes les permutations d’un ensemble à  éléments.
2.  Dans notre cas, il y a également une action du groupe diédral  sur nos morceaux, mais nous ne la
considérons pas ici.

SN N

D4
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créer une image hostile dans le domaine HR) et une méthode de GAN (gene‐
rative adversarial network ; un modèle dans lequel schématiquement deux
réseaux de neurones sont en compétition, le générateur ayant pour objectif de
créer une image hostile et le discriminateur ayant pour objectif de déceler si
l’image provient ou non du générateur) que nous avons développée pour nos
besoins. Cette méthode, validée expérimentellement, atteint un taux de succès
de 93 % sur des images haute définition et dans des temps de l’ordre d’une
minute (dans l’environnement Nvidia Tesla V100 GPGPU de l’IRIS HPC
cluster de l’université du Luxembourg [31]).

La qualité visuelle est illustrée dans les figures 13 et 14 avec des images de
taille . L’image propre (figure 13) est classée comme « baseball » par
ResNet-50 entraîné sur ImageNet, avec un degré de confiance de 99.9 %.
L’image hostile (figure 14), que NBUGan a construite en une minute environ,
est classée par ResNet-50 dans la catégorie « ladle » (prise au hasard parmi les
999 catégories différentes de « baseball ») avec un degré de confiance de 90.9 %
(nous avions exigé que cette valeur soit au moins 90 %).

Fig. 13. Image propre.

Fig. 14. Image hostile.

Comparaison visuelle d’images propres et d’images hostiles de haute résolution obtenues par
NBUGan contre ResNet-50 pour la paire (« baseball-ladle »), avec un degré de confiance ≥ 0.90 %.

2336 × 3504
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Les questions d’attaque sur les CNN dans leurs tâches de classification
d’images comportent d’autres défis que nous n’avons pu détailler ici. Parmi
eux, on peut citer la difficulté à disposer de métriques permettant de vraiment
déceler la perception humaine d’images identiques ; la transférabilité du bruit
hostile (en d’autres termes, la capacité de créer une seule et même image
capable de tromper plusieurs CNN simultanément) ; la sensibilité des classifi‐
cations des CNN aux perturbations et leurs conséquences sur la fragilité des
images hostiles. Enfin, il convient de noter que les techniques d’attaques sur
les images sont susceptibles de s’appliquer à d’autres domaines, tels la voix
[3], [6] et les vidéos [34], et susceptibles, là aussi, de créer des situations
hautement problématiques. Notre équipe travaille actuellement sur certaines
de ces pistes.
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