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La profusion d'images et leur utilisation dans un nombre important d’ap-
plications, certaines d’entre elles particulierement stratégiques, a conduit au
développement de processus automatisés de classification. Les réseaux
neuronaux convolutionnels entrainés sont parmi les outils dominants pour ces
taches a I'heure actuelle. Ils sont cependant exposés a des attaques pouvant
les conduire a des erreurs, aux conséquences potentiellement dramatiques.
Cet article présente certains des risques auxquels sont exposés les réseaux
neuronaux convolutionnels. Il décrit également une série d’attaques récentes
contribuant a l'état de l'art du domaine, des méthodes de défense, et des
pistes de recherche concrétes.

Le nombre de contextes dans lesquels la reconnaissance et la classification
automatique d’images est cruciale n’a cessé d’augmenter depuis plusieurs
années. Elle englobe les applications en matiére de conduite autonome,
d’acces a des batiments, de surveillance satellitaires, de diagnostics
médicaux, etc. Parmi les outils permettant le traitement rapide et massif de
grandes quantités d’images, les réseaux neuronaux convolutionnels (CNN)
entrainés sont, avec les transformers que nous n’aborderons pas ici, proba-
blement parmi les plus efficaces et les plus utilisés aujourd’hui.

Les CNN ne sont cependant pas infaillibles. Ils peuvent également
commettre des erreurs aux conséquences potentiellement dramatiques. Ces
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erreurs peuvent étre le résultat d’images ambigués, mais elles peuvent aussi
étre le fruit d’attaques congues sciemment a ces fins.

L'objet du présent article est d’établir un état des lieux succinct d’'une partie
de I'état de I’art concernant ces attaques, la maniére dont elles sont congues et
les défis qu’elles rencontrent. Il aborde également des méthodes de défense
que l'on peut mettre en place pour détecter leur existence et limiter leur
impact, et enfin présente certaines directions de recherche actuelles.

L’article est organisé comme suit. La section «Images» fournit quelques
éléments introductifs sur les images (taille, source, nature, usage). La section
«Réseaux neuronaux convolutionnels» décrit succinctement ce qu’est un CNN,
les méthodes d’entrainement, les ensembles utilisés a ces fins, et le forma-
lisme des données en sortie. On illustre dans la section «Les risques d’erreurs
de classification » les risques d’erreurs de classification et leurs conséquences
potentielles. La section 5 explique comment fonctionnent les attaques sur les
CNN, décrit la typologie et les scénarii des attaques les plus fréquentes, ainsi
que les attentes en matiere de qualité visuelle des images hostiles créées par
ces attaques. La section «Ou attaquer?» discute les défis technologiques
auxquels fait face un attaquant selon qu’il attaque des images qui appar-
tiennent au domaine basse résolution ou au domaine haute résolution, et
donne une liste de méthodes génériques, qui fonctionnent pour tout CNN,
toute taille d’'image, toute attaque et tout scénario. Des méthodes de défense
des applications utilisant les CNN sont présentées dans la section «Les
méthodes de défense». La «Conclusion » annonce certains résultats non encore
publiés et fournit une série de pistes de recherche.

Images

Les images traitées automatiquement ont des tailles variables comme illustré
sur la grille d’images de la figure 1. Celles de la premiére ligne, extraites de la
base de donnée MNIST [9], sont de taille 28 x 28 pixels; celles de la deuxiéme
ligne, extraites de CIFAR-10 [16], sont de taille 32 x 32; celles de la troisiéme
sont de taille (proche de) 224 x 224 et proviennent de ImageNet [8], et celles de
la quatrieme ligne sont des images de haute résolution collectées sur Internet
(et sujettes au Creative commons licenses) et, pour la troisiéme en partant de
la gauche, fournie gracieusement par l'artiste francais Speedy Graphito [26].
La plus grande image représentée est de taille 2448 x 3264.
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Fig.1. Exemples d'images avec des tailles variant de
28 x 28 a 2448 x 3264.

Les images different non seulement en ce qui concerne leur taille, mais
également selon leur nature et leur mode d’utilisation, ainsi qu’illustré
succinctement dans la table 1.

Nature Mode d’utilisation

Privée Réseaux sociaux

Artistique Catalogues raisonnés, enchéres
Médicale Diagnostic & traitement
Pseudo-aléatoire Captchas

Routes Véhicules autonomes
Aéroports Securité & antiterrorisme
Satellites Militaire

etc. etc.

Table 1. Images : modes d’utilisation selon leur nature.
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Compte tenu de la profusion d’images, de leur utilisation dans de nombreuses
applications, et de la nécessité de les traiter rapidement, il est donc pertinent
de disposer de systémes automatisés de traitement pour classifier les images
selon leurs contenus.

Réseaux neuronaux convolutionnels

Les réseaux neuronaux convolutionnels (CNN) répondent & ces besoins. En
résumé, un CNN est un systéme complexe de couches connectées, et dont les
couches ont des objectifs différents. Un exemple schématique de CNN est
illustré dans la figure 2; les premieéres couches de taille 224 x 224 capturent les
données essentielles de I'image, les couches suivantes proceédent a des calculs
sur les données collectées, aboutissant 4 une derniére couche qui donne un
vecteur de classification de I'image de 1000 valeurs (voir plus loin dans cette
section pour une description conceptuelle du processus générique de
classification).

224 x 224 x3 224 x 224 x 64

112 x112x 128

56| x 56 x 256 o i B
28 x 28 x 512

714 x 14 x 512 1x1x4096 1x 1 x 1000

=7 convolution+RelLU
max pooling
fully nected +RelU
softmax

Fig. 2. Exemple typique de représentation d’un CNN [25].

La Table 2 donne une liste de 10 CNN (;, entrainés sur ImageNet, représen-
tatifs des réseaux classiques historiques du domaine. D’'un CNN a l'autre, le
nombre de couches differe (par exemple VGG-19 possede 19 telles couches),
ainsi que le nombre total de parametres qui les régissent, en 'occurrence de
quatre millions dans le cas de MobileNet et NASNEtMobile a 144 millions
pour VGG-19. Les notions de top-1 et top-5 exactitude sont clarifiées un peu
plus loin.
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Cp. Nom du CNN Parameétres  Top-1 Exactitude Top-5 Exactitude

Cq DenseNet121 [14] 8M 0.750 0.923
C, DenseNet169 [14] 14M 0.762 0.932
C3 DenseNet201 [14] 20M 0.773 0.936
Cq MobileNet [13] 4M 0.704 0.895
Cs NASNetMobile [36] 4M 0.744 0.919
Ce ResNet50 [12] 26M 0.749 0.921
Cr ResNet101 [12] 45M 0.764 0.928
Cg ResNet152 [12] 60M 0.766 0.931
Cy VGG16 [25] 138M 0.713 0.901
Cyo VGG19 [25] 144M 0.713 0.900

Table 2. Exemples de 10 CNN entrainés sur ImageNet, leur nombre de
paramétres (en millions), et leur Top-1 et Top-5 exactitude.

Que fait un CNN dans le cadre de la reconnaissance d’images? Schématique-
ment, il recoit en entrée une image, et produit en sortie un vecteur de classifi-
cation de I'image selon des catégories. Plus précisément (tout en restant sché-
matique dans cet article), un CNN, successivement, (1) est entrainé, (2) passe
un examen, (3) travaille.

Un CNN entrainé est donc un CNN qui a d’abord été exposé a des milliers
ou des millions d’'images. Lors de la phase (1) d’entrainement, le CNN recoit
essentiellement deux informations : 'image et ce qu’elle représente (formalisé
selon des termes décrits plus bas). Ensuite, lors de la phase (2) d’examen, le
CNN est exposé a des images de test, et doit «dire» ce qu’elles représentent.
S’il réussit, il est alors considéré comme apte a étre exposé a des images ne
faisant pas partie de celles qu’il a déja recues en entrée lors de I'entrainement
ou de 'examen : il sera en mesure de fournir une classification de ce que cette
nouvelle image représente, sur la base de l'’expérience acquise au cours de
Pentrainement.

La table 3 donne des exemples d’ensembles d’entrainement. Pour chacun,
elle précise la taille de ces images, et le nombre d’images utilisées pour la
phase (1) et la phase (2). Elle donne aussi le nombre de catégories dans
lesquelles le CNN est amené a classifier les images. Par exemple, les CNN
entrainés sur MNIST classent des images représentant des chiffres (voir
premiére ligne de la figure 1), donc dans les 10 catégories 0,1,2,3,4,5,6,7,8,9.
Les CNN entrainés sur CIFAR-10 classent les images également dans 10 caté-
gories, mais qui sont différentes des précédentes, puisqu’il s’agit (voir
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deuxiéme ligne de la figure 1) d’animaux (oiseau, chat, cerf, chien, grenouille,
cheval) ou d’objets (avion, voiture, bateau, camion). Les CNN entrainés sur
ImageNet classifient les images dans 1000 catégories (des exemples provenant
d’ImageNet sont donnés en troisiéme ligne de la figure 1). Les notions de «top-
1 exactitude» et «top-5 exactitude » spécifiés dans la table 2 traduisent le taux
de réussite a 'examen d’'un CNN entrainé. Par exemple, VGG-19 entrainé sur
ImageNet a une top-1 exactitude de 0.713 et une top-5 exactitude de 0.900.
Cela signifie que VGG-19 a correctement identifié la bonne catégorie des
100000 images de test dans 71.3% des cas, et que cette bonne catégorie se
trouvait parmi les cinq catégories dominantes identifiées par le CNN dans
90.0 % des cas.

Ensemble # images # images de Taille des # Catégories
d’entrainement = d’entrainement test images
MNIST 60000 10000 28 x 28 10
CIFAR-10 50000 10000 32 x 32 10
ImageNet 1.2 million 100000 224 x 224 1000

Table 3. Exemples d’ensembles d’entrainement pour CNN.

Mathématiquement, le processus de classification d’'une image Z par un CNN
C peut étre visualisé comme suit :
i
Z—C— oc(T) = [v1,---,vd], ol 0<y; <1 et Z’Uj:l. (1)
j=1
En ce cas, la longueur £ du vecteur de classification oc(Z) désigne le nombre de
catégories ci,- - -, c¢ dans lesquelles C classe les images auxquelles il est exposé
(¢ = 10 pour les CNN entrainés sur MNIST ou CIFAR-10, et £ = 1000 pour ceux
entrainés sur ImageNet). Chaque valeur v; dépend de C et de Z, et mesure la
plausibilité déclarée par C que T appartienne a la catégorie c;. Le CNN C clas-
sifie 'image Z dans la catégorie ci; correspondant a la valeur vi dominante
parmi toutes les valeurs v;.

La figure 3 montre un exemple typique de classification fournie par un CNN
entrainé sur CIFAR-10, lorsqu’il est exposé a 'image représentée. Essentiel-
lement (et de nouveau, de maniére schématique), la valeur donnée par le CNN
pour la catégorie «chat» est ici v, = 0.97, celle pour la catégorie «chien» est
Vehien = 0.01, et la somme des huit autres valeurs est 0.02.
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Fig. 3. Exemple représentatif de classification
d’une image par un CNN entrainé.

Les risques d’erreurs de classification

Les risques liés a la classification d’images peuvent se résumer en deux
phrases, en quelque sorte duales I'une de 'autre : «ne pas voir ce qui est» et
«voir ce qui n’est pas». Ainsi, la figure 4 nécessite une grande attention de la
part de I'ceil humain pour déceler I'existence d'un chien couché sur le sofa.

Fig. 4. Illustration de la difficulté pour U'eeil humain a déceler ce qui est.

A Pinstar des étres humains, les CNN peuvent aussi commettre des erreurs de
classification d’images. Des images peuvent tromper et les uns, et les autres,
mais en général elles le font différemment. Les erreurs peuvent certes étre
dues a des images tres particuliéres. Elles peuvent aussi résulter d’attaques,
potentiellement avec des conséquences dramatiques, comme illustré sur deux
cas dans la figure 5 [10,23].
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Fig.5. Attaques et conséquences.

Pour les deux images de gauche de la figure 5, 'ajout de lunettes sur le visage
de ’'homme a conduit le CNN a classifier I'image résultante comme étant la
célebre actrice représentée au dessous de lui. Pour les deux images de droite,
I'ajout de petites bandes noires et de petites bandes blanches sur le signe
«STOP» a conduit le CNN a interpréter I'image résultante comme étant le
signal d’'une limitation de vitesse 4 45 miles par heure. Les conséquences de
telles méthodes peuvent étre catastrophiques.

Comment fonctionnent les attaques?

Les attaques procedent par I'ajout de bruit hostile 4 des images selon un
schéma illustré par la figure 6 : un CNN classifie correctement dans la caté-
gorie «chat» une image «propre» de chat; on y ajoute du bruit hostile; le CNN
classifie 'image «hostile» résultante comme étant dans la catégorie «chien»,
alors méme qu'un humain classifierait I'image hostile dans la catégorie «chat»
(dans le cas présent, les deux images sont méme indistinguables pour l'ceil
humain, nous revenons plus loin sur cette notion).

CNN: Cat CNN: Dog

Fig.6. Ajout de bruit hostile a une image pour tromper un CNN.
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Le bruit hostile dépend de :

— l'image propre;

— le CNN;

— le scenario de 'attaque;

— le niveau de connaissance qu’a 'attaquant sur le CNN;

— la qualité visuelle attendue pour I'image hostile.

Il est important de noter que I'ajout de bruit aléatoire ne fonctionne pas, en
particulier si 'on souhaite tromper aussi bien les humains — «ceci est un
chat» — et les CNN — «I’image appartient a la catégorie chien ».

Une attaque dépend fortement du niveau de connaissance qu’a I'attaquant
du CNN a le tromper. Dans une attaque de type «boite blanche », 'attaquant
connait parfaitement le CNN visé (son architecture, le nombre de couches, ses
parametres, etc.). Une attaque de type «boite noire» est beaucoup plus difficile
(et correspond aux cas rencontrés en pratique), puisque lattaquant ne sait
rien du CNN qu'’il cherche & attaquer.

Par ailleurs, a partir d'une image propre classée dans une catégorie c,, une
attaque peut suivre plusieurs scenarii. Les plus fréquents sont, d’'une part, le
«untargeted scenario », ou I'objectif est de créer une image hostile classifiée par
le CNN dans n'importe quelle catégorie sauf celle de I'image propre, et, d’autre
part, le «targeted scenario», ol une catégorie est fixée a l’avance, I'objectif
étant de créer une image hostile classée par le CNN dans cette catégorie
précise et pas une autre. Dans le cas du targeted scenario, on peut aussi poser
des conditions sur le degré d’exigence souhaité pour la classification du CNN
de I'image hostile dans la catégorie visée c; (par exemple en demandant qu’elle
exceéde une valeur fixée a 'avance, ou que la distance avec la seconde catégorie
la mieux placée excéde également une valeur fixée a 'avance, etc.).

banana

Fig.7. Exemples d’images hostiles.
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Enfin, la qualité visuelle des images hostiles peut étre «distinguable», auquel
cas I'eeil humain verra que des modifications ont été apportées, ou non. La
figure 7 illustre cela. Les images de la premiére rangée sont les images propres,
classées par le CNN dans les bonnes catégories. Les images de la seconde rangée
sont les images hostiles. L’eeil humain remarque que des modifications ont été
apportées aux quatre premieres (voir [27,15,22,32]). Il en est incapable pour la
derniére ([18,30], voir également la section «Ou attaquer? »).

En pratique, les cas réels d’attaques nécessitent la combinaison la plus diffi-
cile : boite noire, scénario targeted, des images hostiles indistiguables. De
telles attaques existent, notamment [11,5,4,2,1,33], ainsi que notre attaque a
base d’'un algorithme évolutionnaire [28] (nous évoquons une autre de nos
attaques dans la conclusion).

Ou attaquer?

La taille de plus en plus importante des images utilisées en pratique pose des
défis dont 'ampleur va grandissant. En effet, d'une part, la taille d’entrée des
CNN est souvent petite (32 x 32 ou 224 x 224), les images sont au besoin
retaillées, et les attaques portent traditionnellement sur des images de la
taille d’entrée des CNN ; autrement dit : les attaques sont dans le domaine
basse résolution (LR), comme illustré dans la figure 8.

Original
image

Resized
original
image

Adversarial Adversarial
image

CNN
Input size:
224%224

CNN
label value

1824x2364

Algorithm

Fig.8. Attaque dans le domaine LR.

Or, d’autre part, les images propres en entrée peuvent étre grandes, et appar-
tenir au domaine haute résolution (HR). C’est notamment le cas de la plupart des
images mises en ligne sur les réseaux sociaux. Il peut néanmoins s’avérer souhai-
table de protéger la spheére privée des individus, en limitant leur tracage par des
CNN a partir des images mises (parfois inconsidérément) sur les réseaux
sociaux. Se pose alors la question de la possibilité d’attaquer directement dans le
domaine HR. Un tel schéma d’attaque est illustré dans la figure 9, ou1 I'intention
est d’introduire du bruit hostile directement dans la grande image propre.
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Fig.9. Attaque dans le domaine HR.

La construction d’images HR hostiles conduit a trois défis : vitesse de création
de telles images hostiles, adversité des images une fois retaillées pour
s’adapter a la taille d’entrée des CNN, qualité visuelle des images hostiles
dans le domaine HR.

Il se pose alors notamment la question de l'existence de méthodes géné-
riques qui résolvent ces trois défis tout en fonctionnant pour tout CNN spéci-
fique, toute taille d’image, toute attaque et tout scenario. A notre connais-
sance, notre équipe est la premiere a avoir apporté une réponse positive a
cette question sous la forme de trois méthodes. En résumé, la premiere [17]
consiste a «relever» dans le domaine HR une image hostile construite dans le
domaine LR, c’est-a-dire essentiellement & étendre au domaine HR une image
hostile provenant du domaine LR; la deuxiéme [18,30] consiste & ne relever
que le bruit hostile, et a 'additionner & I'image propre dans le domaine HR; la
troisieme [19] identifie les zones spécifiques de I'image sur lesquelles faire
porter I'attaque dans le domaine HR. Il est & noter que la méthode 2 raffine et
simplifie méthode 1, et que la méthode 3 peut étre combinée avec la
méthode 2.

A titre d’exemple, la figure 10 extraite de [30], illustre la deuxiéme méthode.
Une image propre de haute résolution (domaine HR), de taille 960 x 1280 en
loccurrence, est réduite a la taille 224 x 224 de basse résolution (domaine LR).
Une attaque (peu importe laquelle) sur cette image de basse résolution crée
une image hostile également dans le domaine LR. la différence entre 'image
hostile et I'image propre réduite dans le domaine LR fournit le bruit hostile
dans le domaine LR. Ce bruit hostile (et rien que lui) est «relevé» du domaine
LR au domaine HR par une fonction d’interpolation convenable. Ce bruit
hostile est ajouté a 'image propre dans le domaine HR, ce qui fournit une
image dans le domaine HR qui est potentiellement hostile. Cette image est
réduite au format LR et donnée en entrée au CNN. Si le CNN classifie cette
image réduite dans une classe différente de celle de I'image propre, alors
I'image HR dont elle provient est une image hostile dans le domaine HR.
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C#C,
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Fig. 10. La stratégie «noise blowing up ».

De telles méthodes ménent a des images hostiles d'une trés grande qualité
visuelle, comme lillustre la figure 11, obtenue & partir de notre
attaque [18,30] de type boite noire pour le scénario targeted sur une image de
grande taille (sur les catégories «guépard» pour I'image propre et «minibus»
pour la catégorie cible dans laquelle I'attaque doit conduire le CNN a ranger
I'image hostile).

Clean Image
604 x 910
Cheetah -> 95.27 %
Minibus -> 1.03e - 07%

Adversarial Image
604 x 910
Cheetah -> 0.01 %
Minibus -> 42,63 %

Fig.11. Stratégie « Noise Blowing-Up » avec notre attaque a base
d’algorithme évolutionnaire sur VGG-16 entrainé sur ImageNet.
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Les méthodes de défense

N

Des méthodes destinées a protéger les CNN — ou, plus exactement, les
applications utilisant des CNN — de ce type d’attaque ont été développées (avec
des succes variables). On attend en général d'un systéme de défense qu’il détecte
les images hostiles, potentiellement qu’il procéde a leur exclusion avant tout
autre traitement, et qu’il alerte I'utilisateur du fait qu’une attaque est en cours.

Ces détecteurs peuvent étre supervisés ou non. Un détecteur supervisé a
connaissance a I'avance des attaques qu’il subira, et renforcera la défense des
CNN en ajoutant des images hostiles dans leur ensemble d’entrainement, en
spécifiant évidemment que ces images sont hostiles et doivent étre reconnues
comme telles. Un détecteur non supervisé est plus réaliste, puisqu'on ne
suppose alors pas connues les attaques a I'avance. Les performances de ces
détecteurs sont mesurées par une série d’'indicateurs (taux de détection, taux
de faux positifs, complexité, overhead, précision, recall, F1, inference time, etc).

LID [21] est un exemple de détecteur supervisé. NIC [24], ANR [20], F'S [35]
et ShuffleDetect [7] sont des exemples de détecteurs non supervisés. A titre
d’illustration, ShuffleDetect s’inspire du test probabiliste de primalité de
Fermat. Concrétement, une image Z (carrée dans notre exemple, de taille
224 x 224) est totalement partitionnée en N morceaux (N =16 dans notre
exemple).

— CNN — Cq " Ce i Ca . C1000

cq o | G co | e w  C1000

Fig.12. ShuffleDetect : action de o, classification de Z et de sh,(Z).
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Or il y a une action sur ces morceaux du groupe symétrique’2 Sy. L'on
prend 100 permutations aléatoires oi,---,0100 € Sy (ce qui est largement
possible parmi les N! permutations du groupe Sy considéré). Pour chaque telle
permutation o, on construit l'image mélangée sh,(Z) en permutant les
morceaux de Z selon 'action de o. On obtient les vecteurs de classifications du
CNN pour 7 et pour sh,(Z). La figure 12 illustre ce processus.

On compare les catégories dominantes et I'on décréte I'image Z comme
propre si, pour au moins la majorité des permutations o, les images mélangées
sh,(Z) sont classées par le CNN dans la méme catégorie que Z, et comme
adversaire sinon. Cette approche, validée expérimentalement dans [7], fait de
ShuffleDetect une premiére rapide ligne de défense susceptible de déceler des
images hostiles ou nécessitant des traitements complémentaires (le plus
souvent plus coliteux en temps).

Conclusion

Cet article a illustré par un survol de certaines techniques existantes les défis
des attaques sur les mécanismes automatiques de reconnaissance d’image par
des CNN. Dans la course entre attaques et défenses, I'avantage semble rester
a l'attaquant, d’autant plus que, malgré I'existence d’algorithmes de défense, il
semble de plus en plus difficile de détecter I'existence méme d’une attaque. La
qualité visuelle des images hostiles est devenue impressionnante, méme pour
des images haute résolution, des attaques de type boite noire et des scénarios
targeted.

Jusqu’a récemment, toutefois, les attaques dans ces contextes tres exigeants
semblaient particuliérement chronophages en comparaison des attaques de
type boite blanche. En effet, 14 ou les attaques de type boite blanche (c’est-a-
dire celles ou l'attaquant connait parfaitement le CNN a attaquer) deman-
daient de 'ordre d'une minute dans un environnement expérimental donné,
les attaques de type boite noire (celles ou, schématiquement, I'attaquant n’a
aucune idée du CNN a attaquer) pouvaient nécessiter au moins quinze fois
plus de temps (parfois bien davantage) dans le méme environnement expéri-
mental (voir par exemple [30]). Cette situation a récemment changé. Nous
montrons dans [29] comment construire, en des temps comparables (voire infé-
rieurs) aux attaques de type boite blanche, des images hostiles par une
attaque de type boite noire, et cela, contre les dix CNN répertoriés dans la
table 2 [5], et pour des images HR. Notre attaque NBUGan utilise la tech-
nique de relevement du bruit hostile de [30] (consistant a identifier le bruit
ajouté pour créer une image hostile du domaine LR, et & «relever» ce bruit du
domaine LR vers le domaine HR et a I'ajouter a4 'image propre de départ pour

1. Le groupe symétrique Sy est le groupe de toutes les permutations d'un ensemble & N éléments.
2. Dans notre cas, il y a également une action du groupe diédral D4 sur nos morceaux, mais nous ne la
considérons pas ici.
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créer une image hostile dans le domaine HR) et une méthode de GAN (gene-
rative adversarial network; un modele dans lequel schématiquement deux
réseaux de neurones sont en compétition, le générateur ayant pour objectif de
créer une image hostile et le discriminateur ayant pour objectif de déceler si
I'image provient ou non du générateur) que nous avons développée pour nos
besoins. Cette méthode, validée expérimentellement, atteint un taux de succes
de 93 % sur des images haute définition et dans des temps de l'ordre d’une
minute (dans l'environnement Nvidia Tesla V100 GPGPU de I'IRIS HPC
cluster de I'université du Luxembourg [31]).

La qualité visuelle est illustrée dans les figures 13 et 14 avec des images de
taille 2336 x 3504. L’image propre (figure 13) est classée comme «baseball » par
ResNet-50 entrainé sur ImageNet, avec un degré de confiance de 99.9 %.
L'image hostile (figure 14), que NBUGan a construite en une minute environ,
est classée par ResNet-50 dans la catégorie «ladle» (prise au hasard parmi les
999 catégories différentes de «baseball ») avec un degré de confiance de 90.9 %
(nous avions exigé que cette valeur soit au moins 90 %).

2k
ResNet-50: baseball —0.999

Fig.13. Image propre.

ResNet-50: ladle — 0. 909

Fig.14. Image hostile.

Comparaison visuelle d'images propres et d'images hostiles de haute résolution obtenues par
NBUGan contre ResNet-50 pour la paire (« baseball-ladle »), avec un degré de confiance = 0.90%.
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Les questions d’attaque sur les CNN dans leurs taiches de classification
d’images comportent d’autres défis que nous n’avons pu détailler ici. Parmi
eux, on peut citer la difficulté a disposer de métriques permettant de vraiment
déceler la perception humaine d’images identiques; la transférabilité du bruit
hostile (en d’autres termes, la capacité de créer une seule et méme image
capable de tromper plusieurs CNN simultanément); la sensibilité des classifi-
cations des CNN aux perturbations et leurs conséquences sur la fragilité des
images hostiles. Enfin, il convient de noter que les techniques d’attaques sur
les images sont susceptibles de s’appliquer a4 d’autres domaines, tels la voix
[3], [6] et les vidéos [34], et susceptibles, 1a aussi, de créer des situations
hautement problématiques. Notre équipe travaille actuellement sur certaines
de ces pistes.
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